|
Предварительные усилители и фильтры
Предварительные усилители и встроенные кроссоверы практически во всех современных моделях автомобильной аудиоаппаратуры выполнены на микросхемах. Использовать в их конструкции дискретные транзисторы сложнее и дороже, а прибавка в качестве звучания не стоит этого. Как правило, в усилителях применяют фильтры на повторителях (фильтры Саллена—Ки). Остальные узлы обычно выполняют по типовым схемам "иэ учебника", хотя встречаются и оригинальные. Эти решения защищены не только патентами. В них используют заказные микросхемы, маркировка типовых элементов уничтожается, принципиальные схемы отсутствуют. Поэтому даже тщательное изучение монтажа не всегда помогает понять принцип работы тех или иных каскадов.
Как уже упоминалось, обязательный набор фильтров для простого усилителя — ФВЧ и ФНЧ. В самых простых устройствах, предназначенных для работы в режиме "2+1", ФВЧ может отсутствовать. Чаще всего применяют фильтры Баттервор-та второго порядка. Причем, наряду с дискретным изменением частоты среза, в последнее время все шире используется плавная перестройка. В усилителях высокого класса, помимо фильтров более высокого порядка, применяют также дополнительные корректирующие звенья, расширены и возможности коммутации.
Так, в двухканальном усилителе "Lanzar 5.200" предусмотрена развитая система регулировок. Кроме регулировки чувствительности глубиной более 32 дБ, есть и плавная подстройка фазы сигнала (подробно об этом — в следующей части статьи). Имеются также пара линейных выходов для наращивания системы и два независимых кроссовера четвертого порядка (24 дБ на октаву, ФВЧ — 40...230 Гц, ФНЧ — 65...240 Гц). Это позволяет применить дополнительный усилитель без кроссовера. Сигнал на линейном выходе можно получить как с плоской АЧХ, так и после прохождения фильтров. Причем если в основном тракте включен ФВЧ, то на линейный выход сигнал идет через ФНЧ (и наоборот). За счет независимой регулировки частот среза можно исправить некоторые дефекты АЧХ в области стыка полос, не прибегая к эквалайзеру.
Для точной коррекции АЧХ в диапазоне "наиболее вероятных проблем" предусмотрено одно звено параметрического эквалайзера с регулируемой добротностью, центральная частота которого перестраивается в диапазоне 28...320 Гц. В зависимости от выбранного распределения частот между усилительными каналами корректор можно использовать как бас-бустер (в области частот 35...50 Гц) для подавления резонанса салона (120... 160 Гц) или для компенсации провала АЧХ на частотах 250...350 Гц.
В усилителе "INFINITY Kappa 102a" частота среза встроенного кроссовера плавно перестраивается в пределах декады (32...320 Гц). Для сигнала, поступающего далее на усилитель, и для сигнала, поступающего на линейный выход, можно независимо установить режимы ФНЧ, ФВЧ и полной полосы. Фактически это два кроссовера в одном усилителе, однако регулировка частоты среза у них синхронная. Анализ схемы показал, что ФВЧ первого порядка реализован как фильтр дополнительной функции. Такое построение при создании многополосных усилительных систем обеспечивает автоматическое сопряжение частот раздела, но не позволяет корректировать АЧХ за счет их взаимного смещения. Впрочем, эквалайзер в системах такого уровня — компонент почти обязательный.
При использовании усилителя с сабвуфером вместо эквалайзера можно воспользоваться фирменной разработкой — динамическим оптимизатором баса. По принципу действия он имеет сходство с параметрическим эквалайзером и содержит звено ФВЧ, частота среза и добротность которого регулируются. Изменение добротности фильтра позволяет, как известно, регулировать вид частотной характеристики на частоте среза — увеличение добротности приводит к появлению характерного пика. Однако в отличие от обычного эквалайзера, величина коррекции для динамического оптимизатора не постоянна, а зависит от уровня сигнала. При больших сигналах подъем низких частот ограничивается, что исключает перегрузку усилителя и сабвуфера. Диапазон перестройки частоты среза — 20...80 Гц. Величина коррекции превышает +6 дБ, причем с увеличением степени коррекции растет и подавление внепо-лосных сигналов (рис. 11).
Рис. 11
Для перестройки частоты среза фильтров в широком диапазоне необходимо использовать многосекционные переменные резисторы с хорошим согласованием характеристик. Так, для двухка-нального фильтра второго порядка требуются четырехсекционные резисторы. Кроме того, сопротивления секций в ряде случаев должны отличаться (например, для ФВЧ Баттерворта — в два раза). Поскольку изменение частоты среза обычно требуется только один раз при настройке системы, во многих конструкциях используют резисторные матрицы. В случае фильтров высокого порядка это не только удешевляет конструкцию, но и повышает ее надежность и точность настройки. Набор резисторов для нужной частоты среза можно приобрести вместе с усилителем либо смонтировать их самостоятельно. В последнее время в автомобильных усилителях все чаще применяют двухзвенные фильтры переменной крутизны, состоящие из звена второго порядка с фиксированной граничной частотой среза и плавно перестраиваемого звена первого порядка. Благодаря такой структуре обеспечиваются прекрасные фазовые характеристики в полосе пропускания (соответствуют фильтрам первого порядка) и хорошее подавление внеполосных сигналов (как у фильтров второго—третьего порядка). Изменение крутизны фильтра в полосе пропуекания можно оценивать с разных позиций, но более гладкая фазовая характеристика, по сравнению с традиционными вариантами, делает фильтры переменной крутизны особенно привлекательными в том случае, когда частота раздела полос НЧ и СЧ—ВЧ лежит в области 400...900 Гц. В этом диапазоне локализация звуковых образов основана на разности фаз сигналов, поэтому для сохранения четкой звуковой картины фазовые искажения желательно минимизировать. Пример схемной реализации таких фильтров — предварительный усилитель и кроссовер рассмотренного выше усилителя "Hifonics Mercury".
На рис. 12 приведена упрощенная схема одного канала. Нумерация элементов условная, цепи питания не показаны.
Рис. 12
На входе установлены сдвоенный регулятор уровня R2.1 и буферный усилитель с коэффициентом усиления 6 дБ, выполненный на ОУ DA1.1 в неинвертирующем включении. Другой ОУ этой микросхемы используется во втором канале усилителя. Далее сигнал поступает на фильтры. Переключатель SA1.1 позволяет подать на усилитель мощности звуковой частоты сигнал с выхода одного из фильтров либо непосредственно с выхода предусилителя.
Фильтр ВЧ переменной крутизны состоит из перестраиваемого звена первого порядка R8.1R9C2 и звена второго порядка с фиксированной частотой среза 80 Гц. Звено выполнено на ОУ DA2.2, включенном повторителем. Частота среза фильтра при перестройке повышается до 1 кГц. Аналогичную структуру имеет и ФНЧ, частота среза которого перестраивается в диапазоне от 20 до 80 Гц. Для получения необходимой добротности фильтра коэффициент усиления ОУ DA2.1 с помощью делителя R16R17 установлен равным 6 дБ. Кроссовер данного усилителя предназначен для работы с сабвуфером или малогабаритными мид-басовыми динамическими головками. Это обуславливает выбор диапазона перестройки фильтров. АЧХ фильтров в крайних положениях регуляторов приведены на рис. 14. Если частоту среза ФВЧ выбрать в пределах 150...250 Гц, за счет спада АЧХ можно в некоторой степени скомпенсировать акустический резонанс салона.
Для коррекции АЧХ сабвуфера предусмотрен бас-бустер. На ОУ DA3.1 выполнен повторитель, а на ОУ DA3.2 — эквивалент последовательного колебательного контура с частотой настройки 45 Гц. Переменный резистор R20.1 регулирует степень включения контура в цепь ООС DA3.1, влияя на коэффициент усиления каскада на частоте настройки. Глубина регулировки изменяема от 0 до +12 дБ.
Рассмотренная схема в различных вариантах характерна для двух- и четы-рехканальных усилителей начального уровня. Но такие усилители могут работать с сабвуфером только в закрытом акустическом оформлении. Для таких вариантов, как фазоинвертор, пассивный излучатель и полосовой громкоговоритель высокого порядка, смещение диффузора головки ниже частоты настройки порта ограничивается только жесткостью подвижной системы. Чтобы ограничить амплитуду колебаний, необходимо исключить из сигнала составляющие с частотами ниже 25...30 Гц. Традиционные RC-цепочки для этой цели непригодны, поскольку не обеспечивают нужной степени подавления инфраниз-ких частот. В специализированных сабвуферных усилителях для этой цели используют активные фильтры четвертого—шестого порядков (si/toson/c). Они могут быть отключаемыми либо неотключаемыми, с фиксированной частотой среза или с плавной ее перестройкой.
На рис. 13 приведена схема кроссовера одного из специализированных усилителей для работы с сабвуфером. Сохранена нумерация элементов, использованная изготовителем; цепи питания не показаны.
Рис. 13
Первый каскад — буферный на сдвоенном ОУ DA102. Далее сигнал поступает на ФВЧ второго порядка, выполненные на ОУ микросхемы DA101. Применение фильтров позволяет исключить перегрузку малогабаритных АС нижними частотами диапазона. Частота среза ФВЧ перестраивается в полосе 30...600 Гц четырех-секционным переменным резистором VR101. Поскольку для ФВЧ Баттерворта сопротивление резисторов первого и второго звеньев должны отличаться в два раза, параллельно одной из секций подключены резисторы R104 (R204). У такого решения есть особенность — характеристика Баттерворта сохраняется в достаточно узкой полосе перестройки {примерно до 100 Гц). Далее пропорциональность сопротивлений нарушается, и в верхней границе диапазона фильтр превращается в равнокомпонентный. В отличие от фильтров Баттерворта, равнокомпонентные фильтры имеют более плавный перегиб АЧХ, а спад начинается относительно далеко от частоты среза (рис. 14). С выхода фильтров сигнал через буферные повторители на сдвоенных ОУ DA106, DA107 поступает на линейные выходы фронтальных и тыловых каналов к внешнему усилителю.
Рис. 14
Оставшаяся часть устройства формирует сигнал для сабвуфера. С выхода буферных каскадов на DA102 сигнал через сумматор на резисторах R106, R206 поступает на ФВЧ четвертого порядка ("Subsonic"), выполненный на сдвоенном ОУ DA103. Частота среза изменяется в интервале 10... 130 Гц четырехсекционным переменным резистором VR102. Затем сигнал подается на ФНЧ третьего порядка на ОУ DA104.1, частота среза которого изменяется в интервале 20...200 Гц четырехсекционным резистором VR103. Выбранное сочетание частот среза позволяет получить практически любую результирующую АЧХ — вплоть до колоколообразной. Некоторые варианты АЧХ фильтров приведены на рис. 15.
Рис. 15
После фильтрации сигнал через регулятор уровня VR105 поступает на корректирующий усилитель (DA104.2). В цепи ООС этого каскада включен эквивалент последовательного колебательного контура — на DA105.1, аналогичный показанному на рис. 12 (DA3.2). Переменный резистор VR104 (регулятор подъема басов, называемый "X-bass или "Super bass") изменяет степень включения контура в цепь ООС, повышая коэффициент усиления каскада на частоте 45 Гц в интервале 0...+18 дБ.
Последний каскад на ОУ DA105.2 — фазовый корректор. Необходимость его применения вызвана тем, что в фильтрах высокого порядка возникает значительный сдвиг фазы сигнала. Кроме того, поскольку в подавляющем большинстве автомобилей сабвуфер устанавливают в багажнике или задней части салона, излученный им сигнал задержан относительно сигнала фронтальной АС. Совокупное воздействие этих факторов вызывает воспринимаемое на слух "отставание" баса. Особенно заметен этот эффект, если сабвуфер воспроизводит частоты выше 70...80 Гц. В ряде случаев "состыковать" полосы по фазе удается простой сменой полярности подключения динамической головки сабвуфера, но для более точной настройки необходим фазовый корректор.
На рис. 16 приведены фазочастотные характеристики этого каскада для различных значений сопротивления резистора VR106. Частота, на которой вносимый корректором сдвиг фазы составляет 90 град., определяется постоянной времени цепи C118VR106. Линейный участок ФЧХ простирается примерно на одну октаву вверх и вниз от частоты настройки.
Рис. 16
Применение фазового корректора оправдано не только для сабвуфера — введение сдвига фазы на средних частотах позволяет скорректировать звуковую сцену. Поэтому аналогичный узел входит в состав некоторых усилителей и внешних кроссоверов, предназначенных для многополосного усиления.
Внешние кроссоверы выполняются практически по тем же схемам, что и встроенные, но отличаются развитой системой коммутации и более узкой специализацией. В кроссоверах широкого применения наиболее часто используются фильтры второго порядка, перестраиваемые резисторами. В кроссоверах, предназначенных для профессиональной установки (с соответствующей измерительной аппаратурой), обычно применяют фильтры четвертого порядка, для настройки которых используют резисторные сборки.
Питание большинства внешних кроссоверов — двухполяр-ное, поэтому в конструкцию входит преобразователь напряжения бортовой сети. Однополярное питание — только в самых дешевых конструкциях, рассчитанных на источники сигнала с выходным напряжением не более 0,5 В. Отказ от универсальности, свойственной встроенным кроссоверам большинства усилителей, значительно изменил многие их характеристики. Так, пределы плавной перестройки частоты двухполосных кроссоверов нередко ограничены двумя-тремя октавами в наиболее часто используемых полосах частот 50...800 Гц и 2... 10 кГц, разбитых на несколько интервалов.
Смена множителя частоты в "многодиапазонных" конструкциях производится переключением частотозадающих конденсаторов. Если ограничить ширину полосы регулирования одной-двумя октавами, то в фильтрах второго порядка можно перестраивать только одно звено. При этом добротность и форма АЧХ фильтра практически не изменяются, но в конструкции допустимо применение недорогих двухсекционных переменных резисторов.
В трехполосных кроссоверах используются те же схемотехнические решения. Основные отличия связаны с организацией канала средних частот. Для расширения области их применения во многих конструкциях отключают входящие в полосовой фильтр средних частот ФВЧ или ФНЧ, чтобы обеспечить возможность изменения фазировки каналов при настройке системы, нередко придусмат-ривают дополнительные инвертирующие каскады и переключатели полярности сигнала. Встречаются и плавные регуляторы фазы, подобные рассмотренному выше.
Назад
|
|
|